博彩平台

新闻公告
新闻公告
当前位置:博彩平台  新闻公告
2019年苏州大学东吴博彩平台 “经济管理类前沿研究方法论”暑期学校火热招生
作者: 来源:{文章出处} 日期:2019-06-18 人气:1799


主办单位:苏州大学

指导部门:苏州大学研究生院

承办部门:苏州大学东吴博彩平台

举办时间:201976日—728


由苏州大学主办,苏州大学研究生院指导、苏州大学东吴博彩平台 承办的2019年“经济管理类前沿研究方法论”研究生暑期学校将于201876日—728日在苏州大学举办。苏州大学东吴博彩平台 暑期学校的宗旨和目的是为了促进经济管理类研究方法的现代化和国际化,为国内知名高校的推免生提供一个推免的机会和平台,吸引985211学校拟具有推免资格的优秀本科生报考苏州大学东吴博彩平台 研究生。期间,学院将组织有关专家面向暑期学校拟具有推免资格的学生进行研究生提前面试。暑期学校形式多样、精彩纷呈,涵盖多个主题课堂、讲座报告等,具有超强影响力的导师悉数登场,这是苏大东吴博彩平台 暑期青年学生学术交流的顶级盛会。

此次暑期学校的授课形式多元、教学内容丰富,开设七门课程并举办多场讲座,涵盖包括实证研究方法、大数据分析方法、运营优化方法以及社会网络分析方法等多个领域,邀请了来自宾夕法尼亚大学沃顿博彩平台 、休斯顿大学、纽约州立大学、牛津大学、天普大学、英国兰开斯特大学等国际知名大学的教授。

本次暑期学校分两个阶段,第一阶段从201976日—2019715日,第二阶段从2019716日—2019728日。

招生对象及说明:

1、 985211学校的预计取得保研资格的大三学生;

2、苏州大学的导师和学生推荐符合上述招生范围的学生;

3、录取到的985高校的推免学生不占导师当年的招生指标;

       4、对于推荐成功的苏州大学现籍的本科生或研究生有奖励;

       5、申请表接收人:徐涛 教授   邮箱:sudasxysqxx@163.com



苏州大学东吴博彩平台 简介



苏州:

 苏州位于长江三角洲中部、江苏省东南部,东傍上海,南接浙江,西抱太湖,北依长江,是著名的江南水乡。

       苏州城始建于公元前514年,距今已2500多年历史,目前仍坐落在春秋时代的位置上,基本保持着“水陆并行、河街相邻”的双棋盘格局,以“小桥流水、粉墙黛瓦、史迹名园”为独特风貌,是全国首批24个历史文化名城之一。全市现有文物保护单位816处,其中国家级59处、省级112处。

  苏州是全国重点旅游城市。平江、山塘历史街区分别被评为中国历史文化名街和中国最受欢迎的旅游历史文化名街。现有保存完好的苏州园林60余个。拙政园、留园、网师园、环秀山庄、沧浪亭、狮子林、艺圃、耦园、退思园等9个古典园林被联合国列入《世界文化遗产名录》。虎丘、盘门、灵岩山、天平山、虞山等都是著名的风景名胜。太湖绝大部分景点、景区分布在苏州境内。


苏州大学:

苏州大学坐落于素有“人间天堂”之称的历史文化名城苏州,是国家“211工程”重点建设高校、“2011计划”首批入选高校、“双一流”建设入列高校。《THE亚洲大学排行榜》大陆高校位列15位;《U. S. NEWS 世界大学排名》大陆高校位列26位;上交大“世界大学学术排名(ARWU)”大陆高校10-18段位;《Nature Index》大陆/全球高校位列10/54位,是全球上升最快的高校;《nature》全球最具创新力高校与科研机构大陆位列第1名;全球学科排名(ESI)大陆位列2111个学科进入全球基本科学指标(ESI)前1%,化学、材料科学2个学科进入全球基本科学指标(ESI)前1‰



东吴博彩平台 :

历史底蕴深厚。东吴博彩平台 (财经学院)其前身为1982年苏州财校并入苏州大学时成立的财经系。19856月经江苏省人民政府批准,由省财政厅参与投资建设更名为苏州大学财经学院,也是苏州大学建立最早的二级学院。2002年更名为博彩平台-正规博彩平台 。20104月苏州大学与东吴证券股份有限公司签订协议共建博彩平台-正规博彩平台 ,更名为苏州大学东吴博彩平台 。

学科建设完备。学院拥有应用经济学和工商管理两个一级学科博士点,应用经济学一级学科是江苏省重点学科,工商管理一级学科是江苏省优势学科。学院下设经济系、财政系、金融系、经贸系、工商管理系、会计系、电子商务系7个系,拥有金融学、财政学、会计学、经济学、工商管理、财务管理、电子商务、国际经济与贸易等专业和金融学类(中外合作办学)(金融学)专业。金融学为省级重点学科、省级品牌专业,会计学专业为省级特色专业,2018年通过澳洲CPA认证,工商管理类专业为省级重点专业(类)。目前在读全日制本科生2000余人,双学位学生400多人,在读博士、硕士研究生1000余人。

博士后流动站       应用经济学  工商管理

博士、硕士学位点

一级博士授权点

应用经济学         工商管理

博士学位点

金融学

财政学

区域经济学

大数据与金融科技

企业管理

会计学

运营与供应链管理

大数据与商务智能

硕士学位点

金融学

财政学

企业管理

区域经济学

产业经济学

国际贸易

会计学

专业学位硕士点

工商管理硕士(MBA

会计硕士(MPAcc

金融硕士

税务硕士

国际商务硕士


师资队伍强大。学院现有教职工165人,其中专任教师137人,博士生导师12人,教授28人,副教授69人,讲师39人。取得博士学位和正在攻读博士学位的教师75人,享受国务院特殊津贴的专家2人,国家优青1人,中组部青拔1人,教育部“新世纪优秀人才计划”入才2人,江苏省“333工程”培养对象6人,省特聘教授1人,江苏省“双创”教授2人,东吴学者高层次人才计划1人,江苏省“青蓝工程”培养对象4人,学院还聘请了30多位来自加州大学伯克利分校、哥伦比亚大学、得克萨斯大学达拉斯分校等知名高校的海内外院士、千人计划特聘教授、长江学者讲座教授等专家学者、以及凯驰投资(中国)有限公司、江苏亨通集团等世界500强 、中国民营企业100强企业家50余位担任学院兼职教授。

科研平台众多。学院现有与央行共建“长三角数字货币研究院”、与江苏省税务总局共建的“国际税收战略研究与咨询中心”,依托教育部人文社科重点研究基地“中国特色城镇化研究中心”、省级培育智库“东吴智库”高端研究平台。学院拥有多媒体教学系统、经济管理实验中心(金融模拟实验室、电子商务模拟实验室、企业运营管理模拟实验室、外贸单证模拟实验室和会计模拟实验室)、资料室、学术报告厅等现代教学设施和设备,为师生学习和交流提供了平台与支撑。

科研成果显著。近年来学院共承担国家、省、市各级科研课题300多项,其中国家社科基金重大项目2项,重点项目1项;撰写出版专著250余部;发表学术论文1200多篇,其中在MISQJOMJMISDSTRB等国际A类期刊发表论文20余篇;获得各类科研奖励180多项。

国际视野开阔。学院重视国际化人才培养,与美国、加拿大、澳大利亚、法国、意大利、西班牙、新加坡等20多个国家和地区的100多所高校进行合作,设立了本、硕、博联合培养,交流交换、直通车、海外实习、暑期游学等项目。加盟“一带一路+”全球精英交换项目,互认学习,互免交换学费。高水平的国际平台、跨文化的全球视野吸引了法、德、日、韩等欧美亚非国家留学生来院学习。

社会服务多样:发挥学院的学科优势、人才优势和科研优势,积极为地方政府和企业服务。为省内外各级政府部门开展培训工作,为各类企业培训中高级管理人员。已建立二十余个干部培训基地、科学研究基地和研究生工作站。


受 邀 主 讲 人


  • 彭小松

University of Houston

xpeng@bauer.uh.edu

课程名称:Empirical Research Design and Methods

  • 邢海鹏

State University of New York

xing@ams.sunysb.edu

课程名称:An introduction to financial time seres

  • 马宗明

University of Pennsylvania

zongming@wharton.upenn.edu

课程名称:Network data analysis

  • Jose Benitez

Rennes School of Business, France

jose.benitez@rennes-sb.com

课程名称:Leading digital business transformation

  • 高展

Lancaster University

z.gao@lancaster.ac.uk

课程名称:Advanced Accounting Research

  • 金彤丹

Texas State University

tongdan_jin@yahoo.com

课程名称:Big Data Analytics: Concept and Algorithms

  • 陈建清

University of Texas

chenjq@utdallas.edu

课程名称:Analytical Modeling and Research in Management Information Systems

  • Subodha kumar

Temple University

subodha@temple.edu


课 程 安 排


Time

Location

Presenter

Course

July 6, 9:00

Rm.105, 1st floor, Business School


Opening Ceremony

July 6, 14:00—16:00

Rm.105, 1st floor, Business School

Bin Ke


July 7—9, 9:00—11:30;

July 10,

14:00—16:30

Rm.105 ,1st floor, Business school

Haipeng Xing

An Introduction to Financial Time Series

July 7—9,

14:00—16:30;

July 10,

9:00—11:30

Rm.105 ,1st floor , Business school


Zongming Ma

Network Data Analysis

July 11—14,

9:00—11:30


Rm.105 ,1st floor , Business school


David Xiaosong Peng

Empirical Research Design and Methods

July 11—14,

14:00—16:30


Rm.105 ,1st floor , Business school


Jose Benitez

Leading Digital Business Transformation

July 15—18,

9:00—11:30,

14:00—16:30

Rm.105 ,1st floor , Business school


Tongdan Jin

Big Data Analytics: Concept and Algorithms

July 16—19,

9:00—11:30,

14:00—16:30

Rm. EMBA ,3rd floor, Business school

Zhan Gao

Advanced Accounting Research

July 22—25,

9:00—11:30,

14:00—16:30

Rm.105 ,1st floor, Business school


Ning Wan

Artificial Intelligence and Frontiers of Fintech

July 26—28,

9:00—11:30,

14:00—16:30

Rm.EMBA,3rd floor, Business school

Subodha Kumar



课 程 详 情


主讲人:彭小松(David Xiaosong Peng

课程名:运营管理实证研究方法(Empirical Research Design and Methods

个人简介:

Xiaosong Peng is associate professor in Bauer College of Business, University of Houston. Dr. Peng’s recognitions include Decision Science Institute Best Inter-Disciplinary Conference Paper Award, China Ministry of Education Research Award, Journal of Operations Management Associate Editor Service Award, Academy of Management Chan Hahn Best Paper Award Finalist, Juran Center for Leadership in Quality fellowship, among others.

课程介绍:

This course focuses on research question formulation, theory building, research design and analysis methods, as well as writing and critiquing research papers.  It is designed for graduate students in the management disciplines—including but not limited to operations management, and information systems. The objective of this course is to help students develop a good research proposal. The main topics covered include formulating research questions and theoretical foundation, research design and data collection, analysis methods, and crafting papers for publication.  

主讲人:王宁(Ning Wang

课程名:Artificial Intelligence and Frontiers of FinTech

个人简介:

Dr. Ning Wang works as Chief Data Scientist and Senior Research Fellow at the Oxford-NIE financial Big Data Lab, Mathematical Institute, University of Oxford. He also works as Research Fellow at the Oxford Internet Institute and the St Hugh’s College, University of Oxford. His research is driven by a deep interest in analysing a wide range of social and economic problems by exploiting data science approaches. His research interest lies in the broad areas of artificial intelligence, blockchain, FinTech, behavioral finance, and social networks. More specially he is interested in machine/deep learning in finance, social media and mobile trading platform, online sentiment analysis and financial market, trading behaviors and performance evaluation.


课程介绍:

We are now living in an age of big data. The diversity of big data usage opens up endless possibilities. Many people are talking about how to use artificial intelligence to deal with the problems caused by big data. However, big data and artificial intelligence are expected to be used in a variety of industries, especially in innovative areas such as FinTech. At the same time, AI and big data bring many challenges and opportunities to many financial businesses. For example, AI can provide revolutionary solutions to financial technology, optimize financial transactions and risk management, and reduce the operating costs of retail banking call centers. This course covers current AI and big data as well as basic algorithms, applications and trends in the financial field.

主讲人:邢海鹏(HaiPeng Xing

课程名:金融时间序列介绍(An introduction to financial time seres

个人简介:

Haipeng Xing, Associate Professor with tenure, Department of Applied Mathematics and Statistics, State University of New York at Stony Brook.


课程介绍:

This course will introduce various concepts in time series analysis with R implementation. In particular, the course will cover linear time series models, moving average (MA), autoregressive (AR),ARMA and ARIMA models, estimation and forecasting of linear time series models, ARCH models, GARCH models, and their applications to finance and modern risk analysis.

主讲人:马宗明(Zongming Ma

课程名:Network data analysis

个人简介:

Dr. Zongming Ma is an Associate Professor of Statistics of the Wharton School at the University of Pennsylvania. He received his PhD in Statistics from Stanford University in 2010 and has since then been on the faculty of the Wharton Statistics Department. Dr. Ma’s research interests include high-dimensional statistical inference, nonparametric statistics, network data analysis, and their applications in biomedical data analysis. He is a recipient of a Sloan Research Fellowship and an NSF CAREER Award.


课程介绍:

This course covers some recent developments in fundamental limits and optimal algorithms for network analysis. We focus on statistically optimal procedures in three fundamental problems of network analysis: graphon estimation, community detection, and hypothesis testing. For each problem, we shall introduce state-of-the-art results in the literature followed by general principles behind the optimal procedures. This allows us to connect problems in network analysis to other statistical inference problems from a general perspective.

主讲人:Jose Benitez

课程名:Leading digital business transformation

个人简介:

Jose Benitez is a Full Professor of IS at Rennes School of Business, France. Jose also holds the COVIRAN-Prodware Chair of Digital Human Resource Strategy at the University of Granada, Spain. Jose is also Instructor of PLS-PM at the PLS School. His research interests cover the study of how the firm’s portfolio of IT capabilities affects organizational capabilities and firm performance, and the development of PLS-PM in the field of IS.


课程介绍:

Information technologies (IT) have transformed the ways in which firms compete, and have become an important factor in management decisions at all levels of the business. This course is an introduction to IT management and digital business transformation in the contemporary firm. The course will cover some of the latest trends in Information Systems (IS) for business value creation in companies. The students will develop world-class IT managerial skills. Specifically, we will develop the set of IT knowledge and managerial skills that are required for business executives (as opposed to IT specialists) who are responsible for the entire organization or functional departments. We will examine IT management for different purposes, including how firms can transform, innovate, and get a competitive advantage with IT.

主讲人:高展(Zhan Gao

课程名:Advanced Accounting Research Methodology

个人简介:

Dr. Zhan Gao is currently an assistant professor of Department of Accounting and Finance, Lancaster University, UK. His major RESEARCH INTEREST Equity valuation, executive compensation, financial statement analysis, R&D.


课程介绍:

The purpose of this seminar course is to survey and discuss main research themes in the contemporary literature of empirical financial accounting(augmented with closely related topics). Topics covered will include: Use of accounting information in capital market; Accounting choice and disclosure; Accounting quality and their determinants and consequences; Use of accounting information for contracting purposes.



主讲人:金彤丹(Tongdan Jin

课程名:Big Data Analytics

个人简介:

Tongdan Jin is a tenured Associate Professor of Industrial Engineering (IE) at Texas State University. At present he also serves as the IE Program Coordinator at the University. Dr. Jin’s research interest is focused on low-carbon supply chain design, sustainable manufacturing, and reliability and quality management. His research projects are funded by NSF, the US Department of Agriculture, the US Department of Education, and several private foundations with total exceeding $1.3 million as principal investigator.


课程介绍:

This course covers the process of transforming big data into information for decision making with applications in manufacturing operations, energy system, and service industry. The topics include introduction to data science, analytics and advanced data mining algorithms, and challenges related to analyzing business data. Both supervised learning and unsupervised learning algorithm are introduced. Students will learn how to use software to conduct data analysis.

主讲人:Subodha Kumar

个人简介:

Dr. Subodha Kumar is the Paul R. Anderson Distinguished Chair Professor of Supply Chain, Marketing, Information Systems, and Statistical Science at Temple University’s Fox School of Business. Prof. Kumar also serves as Director of the Fox School’s Center for Data Analytics. His research interests include Healthcare Analytics, Social Media Analytics, Web Analytics, Supply Chain Analytics, Cyber security, Software Management, Data Quality and Data Mining, Sequencing and Scheduling.



2019年苏州大学经济管理暑期学校20190618(报名表)(1).docx


博彩平台-正规博彩平台 地址:中国 苏州 东环路50号

电话:0086-512-67162489 E-mail:dwzgbcpt.com